import torch
from torch import nn
import torch.nn.functional as F
import warnings
import einops as eo
[docs]
class NoCastModule(torch.nn.Module):
def _apply(self, fn):
def keep_dtype(t):
old_dtype = t.dtype
out = fn(t)
if out.dtype is not old_dtype:
warnings.warn(
f"{self.__class__.__name__}: requested dtype cast ignored; "
f"keeping {old_dtype}.",
stacklevel=3,
)
out = out.to(dtype=old_dtype)
return out
return super()._apply(keep_dtype)
[docs]
def to(self, *args, **kwargs):
warn_cast = False
# m.to(ref_tensor): use ref's device, ignore its dtype
if args and isinstance(args[0], torch.Tensor):
ref, *rest = args
args = (ref.device, *rest)
base = next(self.parameters(), None) or next(self.buffers(), None)
if base is not None and ref.dtype is not base.dtype:
warn_cast = True
# keyword dtype
if kwargs.pop("dtype", None) is not None:
warn_cast = True
# positional dtype
args = tuple(a for a in args if not isinstance(a, torch.dtype))
if warn_cast:
warnings.warn(
f"{self.__class__.__name__}.to: requested dtype cast ignored; "
"keeping existing dtypes.",
stacklevel=2,
)
return super().to(*args, **kwargs)
[docs]
def rms_norm(x: torch.Tensor) -> torch.Tensor:
return F.rms_norm(x, (x.size(-1),))
[docs]
class MLP(nn.Module):
[docs]
def __init__(self, dim_in, dim_middle, dim_out):
super().__init__()
self.fc1 = nn.Linear(dim_in, dim_middle, bias=False)
self.fc2 = nn.Linear(dim_middle, dim_out, bias=False)
[docs]
def forward(self, x):
return self.fc2(F.silu(self.fc1(x)))
[docs]
class AdaLN(nn.Module):
[docs]
def __init__(self, dim):
super().__init__()
self.fc = nn.Linear(dim, 2 * dim, bias=False)
[docs]
def forward(self, x, cond):
# cond: [b, n, d], x: [b, n*m, d]
b, n, d = cond.shape
_, nm, _ = x.shape
m = nm // n
y = F.silu(cond)
ab = self.fc(y) # [b, n, 2d]
ab = ab.view(b, n, 1, 2 * d) # [b, n, 1, 2d]
ab = ab.expand(-1, -1, m, -1) # [b, n, m, 2d]
ab = ab.reshape(b, nm, 2 * d) # [b, nm, 2d]
a, b_ = ab.chunk(2, dim=-1) # [b, nm, d] each
x = rms_norm(x) * (1 + a) + b_
return x
[docs]
def ada_rmsnorm(x, scale, bias):
x4 = eo.rearrange(x, 'b (n m) d -> b n m d', n=scale.size(1))
y4 = rms_norm(x4) * (1 + scale.unsqueeze(2)) + bias.unsqueeze(2)
return eo.rearrange(y4, 'b n m d -> b (n m) d')
[docs]
def ada_gate(x, gate):
x4 = eo.rearrange(x, 'b (n m) d -> b n m d', n=gate.size(1))
return eo.rearrange(x4 * gate.unsqueeze(2), 'b n m d -> b (n m) d')
[docs]
class NoiseConditioner(NoCastModule):
"""Sigma -> logSNR -> Fourier Features -> Dense"""
[docs]
def __init__(self, dim, fourier_dim=512, base=10_000.0):
super().__init__()
assert fourier_dim % 2 == 0
half = fourier_dim // 2
self.freq = nn.Buffer(torch.logspace(0, -1, steps=half, base=base, dtype=torch.float32), persistent=False)
self.mlp = MLP(fourier_dim, dim * 4, dim)
[docs]
def forward(self, s, eps=torch.finfo(torch.float32).eps):
assert self.freq.dtype == torch.float32
orig_dtype, shape = s.dtype, s.shape
with torch.autocast("cuda", enabled=False):
s = s.reshape(-1).float() # fp32 for fourier numerical stability
s = s * 1000 # expressive rotation range
# calculate fourier features
phase = s[:, None] * self.freq[None, :]
emb = torch.cat((torch.sin(phase), torch.cos(phase)), dim=-1)
emb = emb * 2**0.5 # Ensure unit variance
emb = self.mlp(emb)
return emb.to(orig_dtype).view(*shape, -1)